Construction and Design of Rectangles based on Perimeter and Area: A didactic proposal based on Modes of Thinking Theory
DOI:
https://doi.org/10.46219/rechiem.v16i2.158Keywords:
Perimeter of rectangles, Area of rectangles, Modes of thoughtAbstract
This work aims to design a didactic proposal that allows the transition between the different ways of thinking in constructing and designing rectangles based on the perimeter and area in 5th-grade students. For this, the proposal was implemented in a private school in the commune of Machali and applied to a course of 35 students at the 5th-grade level. Among the main results, it was obtained that an arithmetic analytical way of thinking prevails concerning constructions based on the perimeter. On the other hand, in the construction of rectangles given the area, an articulation between the arithmetic analytical and geometric synthetic modes prevailed. In both cases, basic operations were essential for students to transition from one way of thinking to another.
Downloads
References
Astorga, M., y Parraguez, M. (2019). Las cónicas en métricas no euclidianas: una mirada desde la teoría de los modos de pensamiento. Transformación, 15(1), 39-51.
Ministerio de Educación. (2012a). Bases Curriculares Primero a Sexto Básico. https://www.curriculumnacional.cl/614/articles-22394_bases.pdf
Ministerio de Educación. (2012b). Programa de Estudio Matemática 5° Básico. https://www.curriculumnacional.cl/614/articles-18980_programa.pdf
Ramírez, C., Oktaç, A., y García, C. (2006 ). Dificultades que presentan los estudiantes en los modos geométrico y analítico de sistemas de ecuaciones lineales. Acta Latinoamericana de Matemática Educativa, 19, 413-418.
Randolph, V. N., y Parraguez, M. C. (2019). Comprensión del sistema de los números complejos: Un estudio de caso a nivel escolar y universitario. Formación universitaria, 12(6), 57-82. https://doi.org/10.4067/S0718-50062019000600057
Rueda, K. L., y Parraguez, M. (2014). La compuesta de dos simetrías con ejes secantes, ¿es una rotación?: Una reflexión desde la teoría de los modos de pensamiento. En P. Lestón (Ed.), Acta Latinoamericana de Matemática Educativa (pp. 309-319). Comité Latinoamericano de Matemática Educativa.
Sierpinska, A. (2000). On Some Aspects of Students’ thinking in Linear Algebra. En J. L. Dorier (Ed.), The Teaching of Linear Algebra in Question (pp. 209-246). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47224-4_8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chilean Journal of Mathematics Education
This work is licensed under a Creative Commons Attribution 4.0 International License.